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Existing searches in unstructured peer-to-peer (P2P) networks are either blind or informed based on
simple heuristics. Blind schemes suffer from low query quality. Simple heuristics lack theoretical
background to support the simulation results. In this paper, we propose an intelligent searching scheme,
called intelligent search by reinforcement learning (ISRL), which systematically seeks the best route to
desired files by reinforcement learning (RL). In artificial intelligence, RL has been proven to be able to
learn the best sequence of actions to achieve a certain goal. To discover the best path to desired files, ISRL
not only explores new paths by forwarding queries to randomly chosen neighbors, but also exploits the
paths that have been discovered for reducing the cumulative query cost. We design three models of ISRL:
a basic version for finding one desired file, MP-ISRL for finding at least k files, and C-ISRL for reducing
maintenance overhead through clustering when there are many queries. ISRL outperforms existing
searching approaches in unstructured P2P networks by achieving similar query quality with lower
cumulative query cost. The experimental result confirms the performance improvement of ISRL.

Keywords: Index terms—Hint-based search; Peer-to-peer networks; Reinforcement learning; Unstruc-
tured peer-to-peer networks

1. Introduction

File sharing peer-to-peer (P2P) networks have been very popular in recent years. They offer

the benefit of harnessing the tremendous storage resources among computers on the internet.

In such networks, each node shares some of its local files with other nodes. All nodes play

equal roles and act as servers for each other. P2P networks are overlay networks. Each

overlay link is a virtual link mapped to a sequence of links in the underlying network. P2P

networks are also dynamic. Nodes may join and leave freely. In an unstructured P2P, the

overlay topology and data location do not follow restrictive rules, which makes this type of

P2P the most widely used one on the internet [1].
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Searching is the basic operation in file sharing P2Ps. Many searching approaches in

unstructured P2Ps have been proposed in the literature, and can be classified as blind or

informed. In a blind search, no hints exist and queries are blindly forwarded, e.g. the random

walk approach [2]. In an informed search, such as routing indices [3], nodes utilize hints to

facilitate query forwarding. Informed schemes usually achieve a higher search quality than

blind ones.

Existing informed approaches can be categorized into either proactive or reactive.

Proactive approaches, such as routing indices [3], propagate hints before files are queried

whereas reactive approaches, for example intelligent search [4], collect hints after query

processing. Reactive approaches do not waste resource in propagating hints about unpopular

files. Routing indices spread hints about document topics. Intelligent search collects past

similar queries. All these informed schemes employ simple heuristics and lack theoretical

support for their effectiveness. In addition, reactive approaches do not try to improve the

quality of collected hints.

In this paper, we propose to systematically learn the best route to desired files through

reinforcement learning (RL) [5]. RL addresses the general issue of how a learner that

interacts with its environment can learn the optimal actions to achieve its goal. The most

distinguishing features of RL are trial-and-error learning and the delayed reward mechanism.

Each time an agent takes an action, it gets an immediate reward and the environment goes

from one state to another. The learner is not instructed which actions to take. Instead it must

discover which actions yield the highest reward by trying them. In most cases, an action may

affect both the immediate reward and all future rewards. Theoretical results prove that RL

converges to the best sequence of actions with maximum cumulative reward.

When RL is applied to P2P searching, each node is a distributed learner and the P2P

network is its environment. An action is a query forwarding. Each query path is a sequential

process. The goal is to reach a node that hosts a desired file. All nodes (learners) work

together to learn the best query path to hosting nodes. Each learner iteratively estimates

which next-hop neighbor is the best one to forward a given query to by trying them. When a

query is successfully resolved, rewards are propagated along the reverse query paths. After

receiving rewards, each node updates its estimation to reinforce better paths. Each learner

can also adapt itself to the network dynamics through this trial-and-error mechanism.

RL has been used in Ref. [6] to adapt P2P topologies to peer interests during searching.

This paper applies RL–P2P searching without topology adaptation. We propose three

models: basic intelligent search by reinforcement learning (ISRL), MP-ISRL and C-ISRL.

The basic ISRL is targeted at locating one desired file efficiently. Each node learns the best

path to one desired file. The learning process includes exploring new potential paths and

exploiting the already discovered paths. To balance exploration and exploitation, each node

adjusts its exploration coarsely or in a fine-grained manner based on the quality of the learned

paths. MP-ISRL, where MP stands for multiple paths, aims at finding k files efficiently. Each

node learns the top-k best paths to desired files. Paths are evaluated by costs or discounted

rewards. C-ISRL, where C stands for Clustering, is designed to reduce the storage

consumption when there are many semantic queries. The saving is achieved by clustering

similar queries.

We make the following contributions in this paper. First, we propose a searching scheme,

ISRL, that systematically learns the best path to a desired file by RL and adapts itself to

system dynamics. To the best of our knowledge, this is the first work that applies RL–P2P

X. Li et al.18



D
ow

nl
oa

de
d 

B
y:

 [F
lo

rid
a 

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t: 
15

:2
2 

20
 J

an
ua

ry
 2

00
8 

searching without topology adaptation. Second, we present three models of ISRL, the basic

version for locating the best path, MP-ISRL for finding top k best paths, and C-ISRL for

processing semantic queries more efficiently. Third, we discuss different trade-offs in

designing these protocols among contradictory objectives, such as balancing exploration and

exploitation. Fourth, we conduct extensive simulations and compare results with existing

searching schemes.

The remainder of this paper is organized as follows. In Section 2, we review the related

searching schemes in unstructured P2Ps and RL. In Section 3, we introduce the basic version

of ISRL. In Sections 4 and 5, we describe two extensions, MP-ISRL and C-ISRL

respectively. In Section 6, we discuss other potential extensions of ISRL. Simulation results

are presented in Section 7. Our work is summarized in Section 8.

2. Related work

In this section, we review searching schemes in unstructured P2Ps and RL.

2.1 Blind search

Blind search includes flooding, random walk and their variations. Flooding is a breadth first

search (BFS) of the overlay graph with depth limit D. Gnutella [7] directly applies flooding.

Its variation in Ref. [8], DiCAS [9] and local indices [10] employ different grouping schemes

to restrict flooding among a subset of nodes in the P2P. The work in Refs. [11,12] improves

flooding by building P2P overlays that match the physical underlying networks. Iterative

deepening [4] is a sequence of BFS searches with increasing depth limits.

Random walk [2] and its variations intend to reduce message redundancy in flooding.

k-walker random walk [2] deploys k random walkers at the querying source and each walker

is forwarded to a random neighbor thereafter. Modified random BFS [4] forwards a query to a

random subset of neighbors. Two-level random walk [13] first deploys k1 random walkers

with the TTL being l1. When the TTL expires, each walker forges k2 random walkers with the

TTL being l2. Dominating-set-based search [14] applies random walk on a connected

dominating set of nodes in the P2P overlay. The work in Ref. [15] runs random walk or

flooding on the set of super-peers, which divide the entire overlay into disjoint clusters.

2.2 Informed search

Informed searches are classified into reactive and proactive. Directed BFS [10], intelligent

search [4], CIS [16], adaptive probabilistic search (APS) [17], GIA [18] and the approaches

in Refs. [19,20] are reactive approaches. Hybrid [21], routing indices [3], scalable query

routing (SQR) [22], SETS [23] and ESS [24] are proactive approaches.

Directed BFS directs BFS searches based on simple heuristics such as the highest message

count. Intelligent search directs a query to a subset of neighbors that answered similar queries

previously. CIS sends queries similarly among the maximum independent set (MIS) of the

P2P overlay. APS forwards a single file lookup query probabilistically based on the past

query executions and the guesses of query sources. APS search can be viewed as an ad hoc

ISRL in unstructured peer-to-peer networks 19



D
ow

nl
oa

de
d 

B
y:

 [F
lo

rid
a 

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t: 
15

:2
2 

20
 J

an
ua

ry
 2

00
8 

application of RL in specific single file lookup queries. Our ISRL approach is more general

and theoretically sound.

GIA considers nodes with heterogeneous capacities. It uses capacity information to

forward more queries to nodes with higher capacities. The approach in Ref. [19] tries to

achieve load balance by utilizing the last node visited as a cursor pointing to where the next

forwarding starts. The scheme in Ref. [20] considers applications where two peers can

communicate with each other via two paths, the default path determined by IP routing, and an

alternate overlay path through a relay node selected among other peers. AS-level path

information is used to select the alternate path that is most disjoint from the default one.

Hybrid probes and forwards queries based on simple heuristics such as the number of files.

In routing indices, each node proactively maintains information about document topics that

may be found through each neighbor. A query is forwarded to the neighbor with the highest

probability that is computed based on the current keyword query and the document

information kept for each neighbor. SQR uses a data structure called exponential decay

bloom filter (EDBF) to proactively propagate information about files. During the

propagation, the amount of information decays exponentially with increasing distance

from the hosting node. A query is dispatched to the best neighbor that has the maximum

amount of information according to EDBFs.

SETS builds an additional semantic overlay on top of the P2P overlay. The semantic

overlay is a small-world graph. ESS adjusts the unstructured P2P overlay to a semantic

overlay by proactively seeking nodes with similar contents and nodes with dissimilar

contents.

2.3 Reinforcement learning

There are many forms of RL. Q-learning [5] is the most popular one because of two factors.

In Q-learning, a learner does not need a model for either learning or action selection. The

convergence of the Q-learning algorithm is not affected by the details of the exploration

strategy. Therefore, we chose Q-learning in this paper. In Q-learning, a Q function is defined

for each state-action pair. The valueQ(s, a) for state s and action a is the expected discounted

cumulative reward obtained by taking action a at state s and following an optimal policy

thereafter. A policy is a mapping from states to actions or to probability distributions over

actions. When the learning terminates, the optimal action from any state is the one with the

highest Q value. A learner estimates Q(s, a) values iteratively based on experiences as

follows. At current state s, select an action a and execute it. After receiving immediate

reward r and observing the new state s0, the learner updates Q(s, a) based on this experience

according to the following formula:

Qðs; aÞ ¼ ð12 hÞQ ðs; aÞ þ hðr þ gmaxbQðs
0; bÞÞ;

where h is the learning rate and g is the discount factor. Both are in the range [0, 1]. Q(s, a)

can be implemented as a simple table or a trainable parameterized function.

RL has been applied in P2Ps to solve problems other than efficient searching. In Ref. [25],

RL was used to design a payment method for motivating peer cooperation.

X. Li et al.20
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3. Basic ISRL

The basic ISRL search is designed to find one desired file. The goal of basic ISRL is to

deliver a query through the best path to a node hosting the desired file. The best path is the

one with the lowest cost in terms of the overlay hops. To reach its goal, with probability pq,

basic ISRL forwards query q to a random neighbor for the purpose of exploring a potential

better path. With probability 1 2 pq, a query is sent through the best path currently known.

The newly explored better path replaces the existing path during path updates. We consider

semantic queries for files with similar semantic content. It can also be applied to single file

replica lookup by ID without much modification. In this section, it is assumed that all peers

have the same service capacities. Section VI will discuss how to handle peers with

heterogenous capacities.

3.1 Semantic content representation

We adopt the vector space IR model to represent the semantic content of documents and

queries. In this model, each document is represented by a semantic vector of term weights.

Each dimension of the vector corresponds to a term that appears in a document. The weight

of a term indicates its importance in describing the semantic content of a document. If a term

does not appear in a document, the weight is 0. The number of dimensions in a semantic

vector corresponds to the size of the vocabulary for the document collection. To reduce

dimensions, stop words are excluded from the vocabulary. All words that have the same root

word are condensed to their root word (stemming). A user can issue a semantic query

described in a natural language. The system extracts a semantic vector for such a query just

like extracting a semantic vector for a document [26]. Each query vector or document vector

is normalized such that its Euclidean vector norm is 1 before similarity computation.

Many term weighting schemes have been proposed in the IR literature [26]. We calculate

the weight of a term t in the semantic vector of a document d, denoted by wtd, according to the

following formula.

wtd ¼ 1þ logð f tdÞ;

where ftd refers to the number of occurrences of t in d. This scheme does not require the

global knowledge of the document collection in a P2P network. Moreover, this weighting

approach has been demonstrated to be effective in document clustering [27].

3.2 Path entries

To facilitate learning the best path during query processing, each node, say x, keeps one path

entry for each query vector that was resolved successfully through x. Table 1 lists the items in

an entry. q represents the query vector. z is the best neighbor for finding files similar to q that

x has discovered so far. Qxq refers to the cost of the best-so-far path for resolving q, which

corresponds to the Q value in Q-learning but minimized. pq represents the probability of

exploring new paths for q. cntUq counts the consecutive number of updates to Qxq that are

smaller than a threshold. These path entries are created when desired files are found the first

time. They are continuously monitored during path exploration and update process, which

will be discussed later in this section.

ISRL in unstructured peer-to-peer networks 21
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3.3 1-thread semantic search

All nodes handle queries similarly. When node x receives from node y a Query message for

query vector q initiated at node s, it takes the following actions.

(1) If a local file f is semantically similar to q, x replies to y a QueryResponse message that

includes the query, the detailed description about f, and the cost Qxq ¼ 0. The query will

not be forwarded further. If no desired file exists on x, go to step 2.

(2) If x has a path entry that contains vector q, then with probability pq, the query is

forwarded to a randomly chosen neighbor other than z (exploration). With probability

(1 2 pq), the query is sent to the best neighbor z discovered so far (exploitation).

(3) If x does not have an entry for q, it then directs the query to a neighbor chosen randomly.

The query forwarding stops when TTL expires. In the dynamic overlay scenario, x also

generates a query response message at TTL expiration (query failure).

A query response message is sent along the reverse query path and terminates at the

querying source. pq is an important design parameter. It will be discussed in detail in the next

subsection. To avoid searching loops (duplicate queries), each Query message carries all

node IDs on the query path so far.

The cosine similarity model is selected for evaluating the similarity between a query

vector and a document vector or between two query vectors. This model is widely used in the

IR community. Given two m-dimensional semantic vectors, a ¼ ða1; a2; . . . ; amÞ
T , and

b ¼ ðb1; b2; . . . ; bmÞ
T , their semantic similarity, Sim(a, b), is the cosine of the angle between

them

Simða; bÞ ¼

Pm
i¼1aibiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1a
2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1b

2
i

q :

Because we normalize a query vector and a document vector before the similarity

computation, the denominator in the formula is 1. The larger Sim(a, b), the semantically

closer the two vectors a and b. We use a threshold to determine whether two semantic vectors

are similar.

3.4 Path update

In the static overlay scenario, path entries are updated only when queried files are found.

The new path information is carried in the QueryResponse message and transferred along the

reverse query path. All nodes on the reverse query path update their related entries

accordingly. Figure 1 shows how node x updates its path entries when receiving from

Table 1. The query-path entry for query vector q at node x in the basic ISRL.

Notation Meaning

q The query semantic vector
z The neighbor on the best-so-far path for q
Qxq The cost of the best-so-far q at node x
pxq The path exploration probability for q
cntUq The consecutive number of minor updates to Qxq

X. Li et al.22
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y a message qrqs in response to query qs. If the discovered path via y is the first path for q, x

adds this new path. If the cost of the new path via y, denoted byQyq þ 1, is lower than that via

the currently known best neighbor z, denoted by Qxq, then replace z by y. Otherwise, keep z

and reset the update to Qxq, denoted by D Qxq, to zero. If the update to Qxq is trivial, then

increase the counter cntUq. Otherwise, reset cntUq. x always propagates the updated Qxq

using a new QueryResponse message.

In the dynamic overlay scenario, discovered paths may be invalidated due to node leaves

or failures. We remove these false paths in two ways. The first method is to set a maximum

life time for a discovered path. Any existing path is purged automatically when it reaches its

maximum life time. The second method is to delete invalid paths on the reverse query path at

query failure. When a query q fails at TTL expiration, the last node on the query path

generates a query response message to be delivered back to the query source. If a node has a

cache entry for q via its upstream neighbor on the reverse query path, the entry is removed

immediately.

In the dynamic overlay scenario, path update also occurs on query success. But the path

replacement policy considers both path quality and path freshness, which can be estimated

using the following formula respectively:

Pquality ¼ 12
Cost

MaxTTLþ 1
:

Pfreshness ¼ 12
Age

MaxAge
:

Cost refers to the Q value of a path. We use MaxTTL þ 1 instead of MaxTTL to avoid 0

path quality. A path with the maximum length is not useless. Age refers to the time period

that a path entry has stayed in the cache without being refreshed or replaced. When an

existing path is refreshed, its age is reset to 0. MaxAge denotes the maximum time period that

Figure 1. Path update algorithm at node x when receiving QueryResponse message qrqs from node y in basic ISRL.

ISRL in unstructured peer-to-peer networks 23
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an existing path can be cached before it is considered expired and is purged. The total

goodness score of a discovered path is

Pgoodness ¼
Pquality þ Pfreshness if Age , MaxAge

0 otherwise;

(

A new path for q replaces an existing one if the new one has a higher goodness score. This

path replacement policy is designed to implement the following rules. A newly discovered

path for q replaces the existing best-so-far path for q if one of these conditions is satisfied.

. The existing best-so-far path expires (Age ¼ MaxAge).

. The new path has a smaller cost than the existing one.

. The existing path is very old (but not expired yet) and its path cost is not significantly

smaller than the new one.

3.5 Path exploration

Path exploration is controlled by the system parameter pq, which determines which neighbor

to send query q to. The neighbors attempted by a node x serve as the training samples for x to

learn the best path for q. x faces a tradeoff between exploration and exploitation. Large pq
favors gathering new information by exploring unknown paths. Small pq prefers utilizing

already discovered good paths so as to reduce the total path cost. Typically, exploration is

favored initially and exploitation is preferred later. In this paper, we consider two design

options for setting pq.

pq design 1: coarse adaptation. In this option, we use two constants: one large value ahigh

for the initial progressive exploration; one small value alow (,ahigh) for later lazy

exploration. Each node, say x, initializes pq to ahigh to gather new information aggressively.

x changes pq to alow when the best path discovered so far is close to the actual best path. This

can be estimated by a large ($ a threshold w1) number of consecutive minor updates to path

cost Qxq. cntUq is used to count such updates. The detailed function is shown below.

pq ¼
a high if cntUq , w1

a low otherwise:

(

pq design 2: fine tuning. Adjust p gradually. Each node, say x, initializes pq to a large value.

Each time a certain number of consecutive minor updates is observed at x, reduce pq by a

constant amount m. When forwarding a query for q next time, x explores less. pq decreases as

the best-so-far path approaches the actual best path.

pq ¼ pq 2 m; if cntUq . w2:

If a cached path for q is purged due to topology change, the exploration probability for q is

reset according to coarse adaptation or fine tuning.

3.6 Illustration

Figure 2 shows an example of the basic ISRL search. The query source is A, denoted

by an empty square. The desired file is only hosted in node E, represented by a solid circle.

X. Li et al.24
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The arrows indicate query forwarding directions. The number next to each arrowed line

refers to the experiment sequence. A–F are node IDs. The number within curly brackets next

to each node ID is the Q value for this query. The first trial via B is successful, which causes

nodes D, C, B and A to add new entries for this query with Q values as shown in the Figure.

The second and third trials fail. No update to Q values occurs on the reverse query path.

The fourth experiment succeeds and causes node F to add a new entry with cost 1 for the

query. A replaces the entry to B by the new entry to F with lower cost 2. Therefore,A learns

the best path to hosting node E through trials.

The basic ISRL corresponds to Q-learning with the following settings: r ¼ 1, g ¼ 1 and

h ¼ 1. Thus, we have

Q ðs; aÞ ¼ 1þminb Q ðs 0; bÞÞ:

Because Q(s, a) represents the path cost, it is to be minimized. r is set to 1 considering that

the path cost is computed in terms of overlay hops. g is set to 1 because Q(s, a) represents

path costs and discounts are unnecessary. h is set to 1 because we can adjust learning through

the exploration probability.

4. MP-ISRL (Multi-path ISRL)

The basic ISRL keeps only one path for each successful query vector. This may not suffice

when we try to find more than one desired file. In this extended version, MP-ISRL, each node

keeps multiple (k) paths for each query vector. Both exploration and exploitation are

implemented as k-thread forwarding. An exploring message for vector q is always sent to

k neighbors chosen randomly. An exploiting message always utilizes k discovered paths for

q. If a node does not have k known paths, it replaces unknown paths by random forwarding.

The exploration probability for q is similar to basic ISRL. A newly discovered path is always

Figure 2. An example of the basic ISRL search.

ISRL in unstructured peer-to-peer networks 25
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added before k paths have been found, and replaces the worst path thereafter if it is better.

Path evaluation can be based on cost alone or discounted reward considering both cost and

similarity scores of desired files. In this section, we consider P2P networks where all peers

have the same service capacities. Section VI will discuss how to handle peers with

heterogenous capacities.

4.1 Path entries

Each node keeps the top k best-so-far paths for each successful query vector. Table 2 lists

items in the path entry for query vector q kept at node x. (zj, Qxqj) represents the jth path. zj is

the next-hop neighbor on this path and Qxqj is the path evaluation score. pq has the same

meaning as that in basic ISRL. To determine whether the top k best paths have been found,

cntUq counts the consecutive number of minor updates to any path for q.

4.2 k-thread semantic search

When a desired file is found, a node x in MP-ISRL acts similarly to nodes in basic ISRL.

MP-ISRL differs from basic ISRL in query forwarding. When node x receives a semantic

Query message from node y that contains the query vector q initiated at query source s, x acts

as follows:

(1) If x has one or more paths for q, then with probability pq, q is forwarded to k randomly

chosen neighbors other than those in the known paths (exploration). With probability

(1 2 pq), x dispatches the query along k already discovered paths for q.

(2) If no existing path for q is kept at x, then send the query to k neighbors chosen uniformly

at random.

4.3 Path exploration and update

Like basic ISRL, MP-ISRL sets the exploration probability pq for query vector q using a

similar formula according to the quality of already discovered paths. Unlike basic ISRL,

MP-ISRL gathers new information more aggressively by using k-thread explorations because

MP-ISRL aims to locate the top k best paths. When node x decides to explore new paths for

any query vector q, it dispatches q to k randomly chosen neighbors that do not appear in

known paths.

As for path updates in MP-ISRL, like the basic version, path replacements occur only

when a query result is found. New path information is propagated along the reverse query

path. We evaluate paths in two ways. The first one is by path cost like the basic version.

Table 2. The path entry for vector q at node x in MP-ISRL.

Notation Meaning

q The query vector
zj The neighbor on the jth path for q, j [ [1, k ]
Qxqj The evaluation score of the jth path for q, j [ [1, k ]
pq The exploration probability for q
cntUq The consecutive number of minor updates to any Qxqj, j [ [1, k ]

X. Li et al.26
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The second one is a new model, called discounted reward, which is designed for the scenario

when we care about the similarity scores of desired files with respect to the same query.

4.3.1 Path cost as evaluation score. Figure 3 shows the path update in this scenario. When a

node x receives a QueryResponse message qrqs for query vector q and source s from node y, if

y is the next-hop neighbor on the existing ith path for q, x records the new cost Qxqi if y brings

a smaller cost. If y is a new next-hop neighbor and x has not discovered all k paths yet, add y

as a new path for q. If there are k existing paths for q, replace the worst existing path if the

new path via y is better. If the update to any existing path of q is trivial (,e2), the counter

cntUq is increased. Otherwise, cntUq is reset.

4.3.2 Discounted reward as evaluation score. When evaluating paths using the path cost

alone, we do not know how similar the desired files found through different paths are to the

current query. If we want to get as similar files as possible, we can use both the path length

and the similarity score between a desired file and the current query to evaluate discovered

paths. The reward of a path for query vector q is the similarity score between q and the most

similar desired file on the hosting node. We still prefer desired files that are close to the query

Figure 3. Path update at node xwhen receiving from node yQueryResponse message qrqs in MP-ISRL; path cost as
evaluation score.

ISRL in unstructured peer-to-peer networks 27
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source. Therefore, the reward is discounted exponentially with increasing distance from the

neighbor of the hosting node on the reverse query path.

Path update in this scenario is different from using path cost alone mainly in computing

and comparing Q values for paths. With Q values being discounted reward, paths with higher

Q values are better. Q values are to be maximized. When a desired file with vector f for query

vector q is found on a target node v, the similarity score, Sim(q, f) is returned to the upstream

neighbor y on the query path. y does not discount the reward and sets the Q value for this

path, Qyqv, to be Sim(q, f). y then informs its upstream neighbor x of Qyqv. x assigns the

Q value for this path according to the following formula.

Qxqy ¼ g*Qyqv;

where g is the system parameter to control the amount of discount. It is in the range [0, 1].

The larger the g, the less the discount and the less the impact of path cost. The rest of the

nodes on this new query path calculate the Q value for the path similarly to x.

In the dynamic network scenario, path removal is handled similarly to the basic ISRL. Path

replacement considers both path quality and path freshness. If path cost is used in path

evaluation, the path quality is computed in the same way as in the basic ISRL. If discounted

reward is used, the path quality is the same as Q value.

In summary, both basic ISRL and MP-ISRL apply Q-learning to P2P searching. Each node

learns the best next-hop neighbor to forward a given query in order to follow the best path

with the lowest cumulative cost or the highest cumulative reward. The learning process

iterates through continuous exploration and exploitation. The learning rate is adjusted via the

exploration probability. Basic ISRL keeps the best path while MP-ISRL maintains the top

k best paths.

5. C-ISRL (clustered ISRL)

In this section, we describe another extended version, C-ISRL, which tries to reduce the

storage overhead in the basic ISRL through clustering. We will first introduce the basic idea

of C-ISRL, then discuss how to process queries and how to control path exploration and path

update. The discussion in this section assumes that the service capacities of all peers are the

same. The next section will describe how to handle peers with various capacities.

5.1 Protocol overview

In the basic ISRL, each node keeps one path for each distinct query vector. When the query

set contains a large number of different query vectors, each node has to devote a significant

amount of memory for path maintenance. C-ISRL aims to reduce the storage overhead by

keeping one path for each cluster of similar query vectors.

Given a query qs for query vector q issued by query source s, with probability 1 2 pq, node

x exploits the existing path for the most similar query vector or probabilistically chooses one

among the paths for all similar query vectors. With probability pq, node x gathers new

information by sending q to a random neighbor other than that in the paths for similar query

vectors.

X. Li et al.28
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The goal of path update in C-ISRL is to seek the best path for each distinct query cluster,

each of which is represented by a successful query vector. The representative query vectors at

any node are kept dissimilar to each other so as to maximize distances between clusters.

When a query vector q is resolved, the new path information is spread on the reverse path. If q

is similar to a set of existing query vectors SV, a system policy determines either to add q and

remove all vectors in SV or to discard q and keep SV. The policy will be discussed later in this

section. If no existing query vector is similar to q, then add q and its path.

In C-ISRL, we make the following assumptions. Documents in a P2P network are

localized. If a file f is found on a node x, files semantically similar to f are most likely to exist

in x’s neighborhood. If the initial document distribution does not satisfy this requirement, we

can use the method in Ref. [28] to change the document distribution and then run C-ISRL.

In addition, because different users may have similar interests, queries are assumed to be

clustered. Many similar queries that are targeted for semantically similar files may be issued

from different nodes.

5.2 Path entries

To ease searching, each node keeps track of the best-so-far paths for a certain number of

query vectors, each of which serves as the representative vector of a distinct group of similar

queries. Table 3 shows the structure of a path entry for cluster i kept at node x. Past queries in

i were forwarded by x to some neighbor z. qi refers to the representative query vector for

cluster i. It is one of the past query vectors in the cluster. z is the next-hop neighbor on the

best-so-far path for forwarding qi and similar queries. Qxi refers to the evaluation score of the

best-so-far path for queries in cluster i. The evaluation score can be the path cost or

discounted reward. pi is the probability of gathering new information for queries in cluster i.

cntUi denotes the consecutive number of minor updates to the path cost for cluster i, Qxi.

5.3 Query processing

C-ISRL is different from the basic ISRL in query forwarding. When node x receives from

node y a semantic Query message qs that contains the query vector q initiated at querying

source s, x directs qs as follows.

(1) If x has one or more path entries that contain query vectors similar to q, then with

probability pq, q is forwarded to a randomly chosen neighbor other than that in the

associated path entries (exploration). With probability (1 2 pq), x dispatches q along

one of the already discovered paths for similar queries.

Table 3. The path entry for cluster i at node x: C-ISRL.

Notation Meaning

qi Representative query vector of cluster i
z Neighbor on the best-so-far path for i
Qxi Evaluation of the best-so-far path for i
pi Exploration probability for cluster i
cntUi Number of minor updates to Qxi

ISRL in unstructured peer-to-peer networks 29
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(2) If no path for past similar queries is kept at x, then it sends qs to a neighbor selected

uniformly at random.

Path selection policies during path exploitation can be deterministic or probabilistic.

We can always choose the path for the most similar query vector or probabilistically select

one according to query similarity scores. Let q1, q2, . . . , qn be the n query vectors that are

similar to current query q. The probability of choosing the path for vector qi is computed as

below.

Pðq; path ðqiÞÞ ¼
Sim ðq; qiÞPn
j¼1Sim ðq; qjÞ

:

The deterministic policy offers better path quality. The probabilistic policy is more robust

and can balance the network load.

5.4 Path exploration and update

Path exploration in C-ISRL is similar to the basic ISRL except that the exploration

probabilities are updated somewhat differently. The differences are included in the

discussion of path update. Path update policy in C-ISRL is inspired by the MIS concept.

A MIS of a network is a subset of nodes where each node in the network is either in the MIS

or a neighbor of a node in the MIS. No nodes in the MIS are neighbors of each other. We can

map a set of query vectors to a network. A distinct query vector becomes a node. If two

vectors are similar to each other, then create a link between them. We want to ensure that no

two representative query vectors are neighbors and every non-representative query vector is a

neighbor of some representative query vector.

Following this inspiration, the goal of path update is that each node aims to keep one path

for a number of query vectors. Each query vector acts as the representative for a distinct

cluster of similar query vectors. Its path is the best one among all paths for this cluster. All

query vectors kept in the path cache together cover the entire query set. A query vector covers

another one if both are similar to each other. Because each query vector in the path cache is

designed to cover a distinct set of query vectors, any two vectors in the path cache are not

similar to each other. Figure 5 illustrates this idea. A solid pentagon denotes the existing

representative query vector for a cluster. An empty pentagon refers to a past query vector

similar to the representative vector. The circle denotes the coverage of a representative query

vector that depends on the similarity threshold. The Figure shows four clusters C1–C4 kept at

node x. The details of path update are described as follows.

Path updates occur while query response messages are transferred along the reverse query

path. The algorithm is shown in Figure 4. We use path cost to represent the path quality.

When node x receives from node y QueryResponse message qrqs for query vector q and

source s, if q is not similar to any existing query vector, x initializes the exploration

probability for cluster l that q represents, denoted by pl, and adds q. If q is similar to only one

existing query vector that represents cluster j, q becomes the new representative vector for

cluster j if the path via y is shorter than the current best path for cluster j (the one via neighbor z).

The amount of change to path cost is the difference between the costs of these two paths.

The exploration probability for q and similar vectors in cluster j, denoted by pj, is adjusted

based on cntUj similarly to the basic ISRL.

X. Li et al.30
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q may have a set of (more than 1) similar query vectors in the path cache, denoted by Vs.

For example, in Figure 6, q is similar to two existing query vectors q1 and q2. It means that

the cluster represented by q overlaps with the clusters represented by q1 and q2. In this

scenario, the multi-vector replacement policy probabilistically determines whether to replace

Vs by q or to discard q. The replacement probability, PR(q, Vs) is computed according to the

following formula. In the formula, jVsj denotes the size of Vs. Qyq denotes the cost of the best

path for q and its similar vectors that is currently known to y.Mini(Qxi) andMaxi(Qxi) refer to

the costs of the best and worst paths among all vectors in Vs. cs is a system parameter.

Figure 4. Path update algorithm at node x when receiving QueryResponse message qrqs from node y for semantic
query qs: C-ISRL; path cost as evaluation score.

ISRL in unstructured peer-to-peer networks 31
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PRðq;VsÞ ¼ f ðQyq;Mini{Qxi}Þ · gðQyq;Maxi{Qxi}Þ·hðjVsjÞ;

f ðQyqÞ ¼
1 if Qyq , Mini{Qxi}

0 otherwise;

(
hðjVsjÞ ¼

1 if jVsj , cs

0 otherwise;

(

gðQyq;Maxi{Qxi}Þ ¼
1=Qyq

1=Qyq þ 1=Maxi{Qxi}
:

The function f (Qyq) specifies that a qualified new query vector must have a path better (i.e.

with a lower cost) than the best cached path among all similar query vectors. h(jVsj)

stipulates that it is not desirable to replace many cached similar query vectors by a single

vector with a better path.k The function gðQyq;Maxi{Qxi}Þ is used to weigh the quality of the

Figure 5. An example of four query vector clusters at node x in C-ISRL.

Figure 6. Query cluster overlapping in CISRL.

kTrade-off: when jVsj is large, q can cover many vectors. However, each node needs to re-learn the paths for query
vectors similar to those in jVsj, but not similar to q.

X. Li et al.32
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new path for q and the worst existing path for similar vectors. If the worst existing path is

significantly worse, the replacement probability is higher.

Assume that q represents cluster m, which also contains all vectors in Vs. When q replaces

Vs, the amount of update to the cost of the best-so-far path for cluster m is the difference

between the cost for the new path via y and the best existing path (with the lowest cost)

among all vectors in Vs. The exploration probability for cluster m, pm, is initialized to be the

average of exploration probabilities of similar vectors in Vsweighted by the similarity scores.

The detailed formula is:

pm ¼
1

jVsj

XjVsj

i¼1

ðSimðq; qiÞ·piÞ:

In the formula, Sim(q, qi) denotes the similarity score between q and the ith vector in Vs, qi.

pi refers to the exploration probability for cluster i represented by qi. pm is then adjusted

similarly to the basic ISRL according to the chosen path exploration policy.

If we use discounted reward to evaluate paths, the path exploration and update is similar

except that the Q values of paths need to be computed and compared differently.

One thing worth to mention is that C-ISRL does not increase searching overhead because

of using the representative vector for a distinct group of similar queries. If there is no hint for

queries similar to the current query vector, both C-ISRL and basic-ISRL will choose to

explore a potential path. If such a hint exists, the hint will cause a very low false positive rate.

It means that a search by following the hint for a similar query vector will be successful in

most cases. In C-ISRL, documents in a P2P network are assumed to be localized. If we can

find a file on a node, it is very likely to find similar files nearby. If the initial document

distribution does not meet this assumption, the algorithm in Ref. [28] can be used to modify

the distribution prior to executing C-ISRL.

6. Discussion

In this section, we discuss some more scenarios where MP-ISRL may be applied and other

extensions of ISRL search.

6.1 Other application scenarios of MP-ISRL

The multi-path ISRL was presented earlier for k-thread semantic search. It can also be

utilized in 1-thread semantic search for balancing loads on different paths. During each

search, one out of k existing paths is chosen uniformly at random or probabilistically based

on their Q values. In addition, the k paths serve as backup paths for each other and therefore

increase search robustness. It is possible to use the discounted reward to evaluate paths in the

basic ISRL if more than one desired file is located at different nodes and the semantic search

is targeted at one similar file nearby.

The MP-ISRL can also be employed in non-semantic queries: looking up multiple replicas

of a single file by ID. We can keep multiple paths to each queried file. But the discounted

reward will not be applicable.

ISRL in unstructured peer-to-peer networks 33
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6.2 Other extensions of ISRL

The ISRL described previously can be extended in many ways. We can combine MP-ISRL

and C-ISRL and have each node maintain multiple paths for each query cluster. Multiple

existing paths for similar query clusters can be probabilistically selected for path exploitation

as follows. Assume that k , N paths need to be selected among N candidate paths.

The probability of choosing the ith path when forwarding query vector q, P(q, pathi), is

computed according to the following formula:

Pðq; pathiÞ ¼
k þ h

b
iPN

j¼1 k þ h
b
j

� � ;

where hi refers to the similarity score between the vector q and the vector associated with the

ith path. k and b are tunable system parameters.

Current ISRL models only utilize positive reinforcement. If a learner has a bad experience,

it does not receive punishment. We can extend the reward to be negative. One example is to

define negative reward in terms of pheromone evaporation [29] (TTL associated with path

information). We can also apply other RL models, such as prioritized sweeping [30], to learn

faster with less training data.

Proactive hints can be integrated into current ISRL models. For example, while rewards

are being collected on the reverse query path, each learner on the path can proactively spread

these rewards to its neighbors. Another scheme is to proactively deploy random agents.

The deploying node can pick a representative query vector with a known good path or a

document vector in its local data store and have the agent spread the known query path or the

path to the document vector.

A higher exploration probability may incur higher load on peers and therefore cause higher

demand in peers’ computing resources, particularly CPU power. When peers have

heterogenous service capacities, we can include capacity as a factor in determining the

exploration probability of a peer. One simple approach is to classify the service capacities of

all peers into different levels, say totally Lc levels, with 1 being the level of the strongest

service ability, Lc being the weakest. Then given a peer with a capacity at level li, the peer’s

capacity-aware exploration probability pqc is computed according to the following formula,

pqc ¼
li

Lc
pq;

where pq represents the exploration probability that is computed without taking into account

of peer capacities.

7. Evaluation

In this section, we present the experimental setup, evaluate the tradeoffs in ISRL design, and

compare ISRL to existing searching schemes in unstructured P2Ps. The simulation setting

and results in static network scenarios are described in Section A–D. The simulation in

dynamic network scenarios is presented in Section E.

X. Li et al.34
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7.1 Simulation setup

We simulated the algorithms using random graphs that have 2000 and 5000 nodes and

average degrees of 5, 10 and 15. The document collection in the P2P network was chosen

from the well-known TREC data set [31]. All documents that are semantically similar are

distributed to randomly selected neighborhoods in the P2P overlay. A number of document

vectors are selected as semantic query vectors such that some query vectors are similar to

each other. Queries arrive sequentially. Each query consists of a query source node and a

query vector. One hundred nodes are randomly chosen as query sources. The query

distribution is uniform. Each unique query vector is requested for a total of 500 times from

different query sources. The threshold that determines the semantic similarity between two

documents is 0.43. Table 4 shows some system parameters and their values. The performance

metrics are the average number of messages per query, the average query success rate, and

the average number of desired documents found. A query is considered successful if at least

one desired document is found.

7.2 Evaluation of the basic ISRL

In this subsection, we first investigate the impact of different path exploration policies, then

compare the basic ISRL approach to random walks.

7.2.1 Path exploration: coarse vs. fine. Figure 7 shows the message loads and query

success rates of coarse path exploration, as described in Section III.E, with different

parameters in different networks. ahigh and alow in the x-axis refer to the aggressive

exploration probability ahigh and lazy exploration probability alow, respectively. The specific

parameter values are chosen to reflect high, medium, and low exploration scenarios. Clearly,

different (ahigh, alow) values affect the performance dramatically in 5000-node networks, but

not much in 2000-node networks. Smaller exploration probability values are better than

larger ones. The best performance is achieved with ahigh being 0.05 and alow being 0.01 in all

networks. We can also observe that the network degree does not affect the performance

significantly, but the network size does.

The performance of fine path exploration, as described in Section III.E, with different

parameters is illustrated in Figure 8. p and u correspond to the initial probability pq and the

step decrease value m. It is observed that different values of ( pq, m) have a major influence

on the performance in 5000-node networks, and a minor influence in 2000-node networks.

Similar to coarse exploration, the network size, not the network degree, is a performance

Table 4. Major system setup.

Parameters Value

Number of nodes 2000 or 5000
Graph model Random graph
Number of documents 6000
Number of query sources 100
Number of unique query vectors 100
Query distribution Uniform
Document distribution Clustered based on similarity
Similarity threshold 0.43

ISRL in unstructured peer-to-peer networks 35
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factor. The best parameter values are pq being 0.05 and m being 0.01. Compared to coarse

exploration, the average number of query messages generated by fine exploration is reduced

approximately 14–25%. The query success rate achieved by fine exploration is increased

around 7–19%. Fine exploration is superior to coarse exploration.

7.2.2 Comparison to 1-walker random walks. The basic ISRL is evaluated against

1-walker random walks where each node randomly forwards a query to one neighbor.

Figure 9 illustrates their performance differences with varying TTLs in random networks

with 2000/5000 nodes and average degree 5. The basic ISRL uses the path update policy: fine

tuning with parameters, pq being 0.05 and m being 0.01. The path evaluation is based on the

path cost. It is observed from Figure 9(a) that in a given network, the message consumption

and the query success rate in both schemes increase with large TTL values because each

query can travel far with larger TTL values and therefore more queries can be successfully

resolved. However, random walks incur much more traffic than the basic ISRL at higher

TTLs because the random walk does not utilize any hints and many messages are wasted.

The basic ISRL reduces traffic by exploiting discovered good paths and exploring better

Figure 7. Basic ISRL: coarse path exploration with different parameters. ahigh, alow correspond to the parameters
ahigh and alow: (a) Average number of query messages and (b) Average query success rate.

Figure 8. Basic ISRL: fine path exploration with different parameters. p, u correspond to the parameters pq and m:
(a) Average number of query messages and (b) Average query success rate.

X. Li et al.36
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paths. In Figure 9(b), the success rate for the basic ISRL increases dramatically at the

beginning. This corresponds to an aggressive exploration period. When many paths have

been discovered for most queries, successive new queries will be delivered along the existing

paths in most cases. The increase in query success rate then becomes trivial. Both the basic

ISRL and the 1-walker random walk achieve a higher query success rate with a smaller

number of messages in 2000-node networks than 5000-node networks. The basic ISRL

outperforms the 1-walker random walk in both types of networks.

7.2.3 Comparison to no-exploration-after-hints. To investigate the benefit of path

exploration, we also compare the basic ISRL to the algorithm that does not explore new paths

after discovering the first one (referred to as no-exploration-after-hints). Figure 10 illustrates

their performances in 2000-node and 5000-node networks with average degree 5. The path

exploration in the basic ISRL is fine tuning with parameters ( pq, m) being (0.05, 0.01) for

2000-node networks and (0.02, 0.01) for 5000-node networks. The path evaluation is based

on the path cost. In Figure 10(a), the algorithm that always exploits the first discovered path

consumes more messages than the basic ISRL. This is because the first discovered path may

Figure 9. Basic ISRL vs. 1-thread random walks in 2000-node and 5000-node networks with average degree 5:
(a) Average number of query messages and (b) Average query success rate.

Figure 10. Basic ISRL vs. no-explore-after-hints in 2000-node and 5000-node networks with average degree 5:
(a) Average number of query messages and (b) Average query success rate.

ISRL in unstructured peer-to-peer networks 37
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not be the best path and the basic ISRL intends to find the best path to a desired file.

Figure 10(b) shows that both the basic ISRL and the no-exploration-after-hints can learn

from the past query results. Therefore the query success rate increases as the TTL increases.

The no-exploration-after-hints has a higher query success rate because it always utilizes the

discovered path. However, it achieves this with a much heavier traffic than the basic ISRL

because ISRL can discover better paths while no-exploration-after-hints cannot.

7.3 Evaluation of MP-ISRL

The MP-ISRL is compared to random walks where each node randomly forwards a received

query message to k neighbors. It employs fine exploration with parameters, pq being 0.05 and

m being 0.01. The path evaluation policy is the path cost. We did experiments in 2000-node

and 5000-node random graphs with average degree 5, 10 and 15. The performance in the

networks with average degree 15 is close to that in networks with average degree 10 and

therefore is not shown in the Figures. Figure 11 demonstrates the performance with varying

k values in networks with average degree 5 and a variable number of nodes. The TTL value

is chosen as 5 because it is large enough to show the performance differences between

MP-ISRL and random walks. It is also chosen for faster simulation speed.

MP-ISRL achieves a higher success rate with much fewer messages starting from k ¼ 3

than random walks because it can learn and utilize discovered paths. At large k values, the

Figure 11. MP-ISRL vs. random walk in 2000-node and 5000-node networks with average degree 5: (a) Average
number of query messages; (b) Average query success rate and (c) Average number of documents found.
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random walk can reach a significant number of nodes. Therefore its success rate is also high.

As for the number of discovered documents, MP-ISRL can find more desired documents than

random walks at mid-size k values due to its higher success rate. Both MP-ISRL and random

walks deliver more queries successfully with less message load and find more desired

documents in smaller networks (2000-node) than larger networks (5000-node). MP-ISRL is

superior to random walks in both types of networks.

The performances of MP-ISRL and random walks in networks with varying node degrees

(5 and 10) and fixed network size (2000 nodes) are illustrated in Figure 12. In denser

networks (average degree 10), both MP-ISRL and the random walk resolve more queries

successfully, generate more query messages, and locate more desired documents. This is due

to the fact that in denser networks each node has more neighbors to forward queries to.

MP-ISRL performs better than random walks in both degree scenarios.

7.4 Evaluation of C-ISRL

C-ISRL is compared to basic ISRL that uses least recently used (LRU) as path cache

replacement policy. We simulated three scenarios with varying cache sizes on random graphs

that have 2000/5000 nodes and average degree 5. These scenarios are

(1) The cache size is less than the number of query clusters.

(2) The cache size is equal to the number of query clusters.

(3) The cache size is greater than the number of query clusters.

Figure 12. MP-ISRL vs. random walk in networks with 2000 nodes and varying average degrees (5 and 10): (a)
Average number of query messages; (b) Average query success rate and (c) Average number of documents found.
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In the simulation, the path evaluation policy is the path cost. The path exploration is fine

tuning. The parameters ( pq, m) used in C-ISRL are (0.05,0.01) for 2000-node networks with

Scenario (1), (0.1, 0.05) for 5000-node networks with Scenario (1), and (0.2, 0.1) for all other

cases. The parameters ( pq, m) used in the basic ISRL with LRU are (0.05, 0.01) for all cases.

The query vectors are classified into 10 query clusters. The query forwarding is probabilistic

when there are two or more cached similar query vectors. Figures 13 and 14 show the average

number of query messages and the average query success rate in these scenarios.

It is observed that C-ISRL surpasses the basic ISRL ( þ LRU) in all three scenarios. When

the cache size is small (less than the number of query clusters), C-ISRL has a satisfactory

performance but the basic ISRL ( þ LRU) performs poorly. In both schemes, the average

number of query messages increases almost linearly as TTL increases. This is because the

small cache size causes many past query vectors to be replaced by newer query vectors.

Higher cache misses cause no hints for a large number of queries. Therefore more messages

have to be delivered with increasing TTLs. As for the query success rate, both schemes

deliver more queries successfully at larger TTLs. However, because of many cache misses,

the success rates at most TTLs are low. The difference in the performance of C-ISRL in both

sizes of networks is not significant. The basic ISRL ( þ LRU) performs better in smaller

networks than in larger ones.

Figure 13. C-ISRL vs. basic ISRL and LRU in 2000-node and 5000-node networks with average degree 5: the
average number of query messages at varying cache sizes: (a) Cache size , number of query clusters; (b) Cache
size ¼ number of query clusters and (c) Cache size , number of query clusters.

X. Li et al.40



D
ow

nl
oa

de
d 

B
y:

 [F
lo

rid
a 

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t: 
15

:2
2 

20
 J

an
ua

ry
 2

00
8 

When the cache size is increased to be equal to the number of query clusters, cache misses

are reduced. Both schemes perform better and C-ISRL is superior to the basic ISRL

(þ LRU). At larger TTL values, the average number of messages consumed by C-ISRL is

significantly less and the query success rate of C-ISRL is much higher than the basic ISRL

(þ LRU). The improvement in performance is because C-ISRL is able to keep one path for

each set of similar query vectors in this scenario. Many queries can be resolved by following

the cached paths for similar past queries. In addition, C-ISRL aims to improve the cached

paths for similar query vectors. In this scenario, both algorithms perform better in 2000-node

networks than in 5000-node ones.

When the cache size is larger than the number of query clusters, the performance of the

basic ISRL ( þ LRU) improves dramatically. The best success rate is at mid-90s and the

average message consumption is reduced further. Due to the increase in the cache size, in

the basic ISRL ( þ LRU) many queries can utilize cached paths for the same query vectors.

This leads to higher success rates and fewer messages. C-ISRL does not benefit much in this

scenario because it is intended to keep one path (the best path) for each group of similar

query vectors. However, it still outperforms the basic ISRL ( þ LRU). In this scenario, both

approaches have a higher query success rate and a lighter message load in 2000-node

networks than in 5000-node ones.

Figure 14. C-ISRL vs. basic ISRL and LRU in 2000-node and 5000-node networks with average degree 5:
the average query success rate at varying cache sizes: (a) Cache size , number of query clusters; (b) Cache
size ¼ number of query clusters and (c) Cache size , number of query clusters.
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7.5 Dynamic network scenarios

To simulate network dynamics, we let pctDynamics number of existing nodes leave and the

same number of new nodes join periodically. This way we can maintain a fixed network size.

The random friend seeding policy [32] is used to initialize the neighbor set of a new node.

Between each topology change, we randomly select 100 requester nodes to issue queries for

20 query vectors that are also randomly chosen. Each chosen query vector is requested for a

total of 600 times from different requesters. In each simulation run, the network changes

15 times. The MaxAge for path expiration is set to be three times of topology change period.

The document collection and query vector set are the same as static network scenarios.

The document distribution is random. The networks are random graphs with 2000 and 5000

nodes and average degree 5. pctDynamics is 5% of the network size.

Figure 15 shows the performance of the basic ISRL in contrast with the random walk.

The path evaluation is path cost. The path exploration policy is fine tuning with parameters

( pq, m) being (0.05, 0.01). The trends in the Figures are similar to the static network scenario.

The basic ISRL outperforms the random walk in both 2000-node and 5000-node networks.

This is because the basic ISRL can adapt itself to dynamic networks. It can discover new

paths to desired documents due to node joins, re-discover paths due to node leaves/failures,

and exploit already discovered paths. The random walk can react to topology changes but can

not exploit already discovered paths. The performance of the basic ISRL in Figure 15 seems

better than that in Figure 9 due to the difference in the documentation distribution in two

Figures. Given the same exploration strategy, when documents are randomly spread all over

the network as in Figure 15, on average an exploration is more likely to succeed than when

documents are clustered around a number of nodes as in Figure 9.

The performances of MP-ISRL and the random walk (randomly forward a query to

k neighbors) in the dynamic networks are plotted in Figure 16. Path cost is used to evaluate

the quality of discovered paths. MP-ISRL explores paths using fine tuning with parameters

( pq, m) being (0.05, 0.01). The maximum TTL value is 5 and k varies from 1 to 5. Clearly, in

dynamic networks, MP-ISRL still resolves more queries successfully and incurs less number

of query messages than the random walk. This is evident in both 2000-node and 5000-node

networks. An interesting observation is that MP-ISRL finds more documents than the

Figure 15. Basic ISRL vs. 1-thread random walks in 2000-node and 5000-node networks with average degree 5
(dynamic network scenario): (a) Average number of query messages and (b) Average query success rate.
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random walk in 5000-node network with all k values and 2000-node networks with k # 4.

But MP-ISRL locates less documents than the random walk in 2000-node networks with

k being 5. This is because the random walk can reach almost any node with a very large

k (the same as the average node degree in the simulation). MP-ISRL tries to directly optimize

the average path length, not the average number of desired documents. In addition, MP-ISRL

only forwards queries along the discovered paths after it converges. There may be less than

k discovered paths for some query vectors.

8. Conclusion

In this paper, we proposed a searching scheme in unstructured P2Ps called ISRL.

It systematically learns the best path to reach desired files and adjusts itself in a dynamic

network. Three design models are presented, the basic ISRL, MP-ISRL and C-ISRL.

We discussed important design issues such as balancing path exploration and exploitation

and offered solutions. Simulation results show that the basic ISRL achieves a higher query

success rate with a lighter message load than the 1-walker random walk and the algorithm

that always utilizes the first discovered hint. MP-ISRL can deliver more queries successfully

at a lower cost than the random walk. C-ISRL outperforms the basic ISRL with LRU being

the cache replacement policy at different cache sizes. In the future, we will conduct in-depth

simulations of the extensions described in the discussion section.

Figure 16. MP-ISRL vs. random walk in 2000-node and 5000-node networks with average degree 5 (dynamic
network scenario): (a) Average number of query messages; (b) Average query success rate and (c) Average number of
documents found.
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